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 1  The CWE Project and the task of the validators 
 
The CWE project aims at coupling the 4 day-ahead markets of the CWE power exchanges, through 
a flow-based implicit capacity allocation mechanism. The core of this mechanism will be an 
algorithm calculating the optimised market results (volumes and prices), from an input consisting of 
information from the PXs’ order books and network parameters provided by the TSOs.  

The CWE project has set up a workstream (the “Algorithm Design Workstream”), with the mission 
of designing the coupling algorithm. The main task of the Validators was to judge on the selection 
work done by the Algorithm Design Workstream, and to compare the proposed algorithms, both 
theoretically and based on the results of empirical testing performed by the candidates. This 
comparison also provides a list of advantages and disadvantages of each algorithm. The validators 
have to provide together one common report, comprising three parts :  

Part I : Evaluation criteria and testing methodology.  

Part II : Theoretical analysis of the algorithms.  

Part III : Testing results for selection including their final recommendations.  

The present report has been written by the validators after understanding the functioning of the two 
candidate algorithms COSMOS and MLC. It concerns the theoretical comparison of these two 
algorithms from the following points of view: mandatory requirements, quality of the solution, 
simplicity, performance, reliability and extendibility. 

 2  Short description of the algorithms 

The building block for both algorithms is a mathematical model for the block free problem. This 
model intends to maximize total net utility. As the capacity for cross-market exchanges is limited, 
congestion must be taken into account (ATC or flow-based formulation). This might lead to different 
clearing prices in different markets. When all orders can be partially filled (block free), the problem 
is well solved and the solution is unique, because the model is a concave quadratic or linear 
optimization problem. Moreover, the property that in-the-money orders are accepted, and out-of-
money orders are rejected holds as a direct consequence of duality theory. 

Unfortunately, the markets under consideration also allow block orders that are "fill-or-kill", i.e. they 
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must be completely executed or completely rejected. This makes the problem a combinatorial 
optimisation problem, which might be infeasible if both in-the-money block orders must be accepted 
and out-of-the money block orders must be rejected. To make the problem feasible, in-the-money 
block orders are allowed to be paradoxically rejected, since paradoxically accepted orders are 
forbidden by market rules. 

The main difference between the two proposed approaches is the way they deal with that 
combinatorial aspect. 

 

 2.1  MLC 
MLC uses a heuristic approach for tackling the combinatorial aspect, while explicitly trying to 
keep the difference between the market price and the rejected block prices (called Delta P) under 
control. As an expected consequence, the number of paradoxically rejected blocks (PRBs) is 
expected to remain small. 

The whole system is based on independent block selector modules (one for each market). These 
modules select a set of winning blocks, leading to new Net Block Volumes (NVB). These new 
volumes are taken into account by translating Net Export Curves (NEC) that are sent to the 
central module in order to solve the mathematical model.  The solver sends back market clearing 
prices to the block selection modules. To avoid infeasibilities, a negative limit price far below the 
low price boundary is assigned to sale blocks and a positive limit price far beyond the high price 
boundary is assigned to buy blocks. 

The selection of blocks is made in such a way that the cumulated delta P value is upper bounded 
by some parameter DP. During the process, DP is increased to allow more PRBs to appear in the 
solution. At each step, the set of winning blocks is reduced by removing blocks which were not 
accepted in the previous iteration but accepted in the current iteration. These blocks become  
PRBs.  The procedure iterates until the cumulated delta P of PRBs becomes lower than DP. 

The heuristic starts with all blocks accepted (DP = 0), then the block selection module iteratively 
modifies the set of winning blocks. If this procedure fails to find a feasible solution, DP is 
increased to allow for more paradoxically rejected blocks. These rules ensure that the set of 
winning blocks is monotonically decreasing, so that the procedure converges.  

To increase the quality of the solutions, a block reintegration procedure is also implemented that 
allow previously rejected blocks to be reintegrated if this improves the quality of the solution. 
This procedure starts with testing of the block with the highest deltaP. This prevents premature 
convergence of the algorithm. 

The procedure stops when the set of winning blocks does not change anymore – which also 
means that the MCP of each market remains the same as in the previous iteration -, and the 
algorithm is tuned such that DP leads to a stable solution quickly (well before the time limit of 10 
minutes is reached).  

 

 2.2  COSMOS 
Cosmos is based on an exact method for tackling the combinatorial aspect. The objective function 
is the net utility value. The mathematical model, including the set of integer variables due to 
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block orders, is submitted to a “classical” branch and bound process, where integrality of the 
block variables is relaxed (meaning that some block orders could be partially accepted at each 
node). In order to find a feasible solution quickly, branching is first done on the “kill” direction, 
and a depth-first-search strategy is applied. When an integral solution is found, clearing prices 
compatible with high-level properties are computed, if they exist. If such prices do not exist, the 
set of accepted blocks is infeasible and is forbidden by adding a new constraint to the model. It 
has been mathematically proved by the COSMOS developers that these new constraints ensure 
feasibility and optimality of the final solution. 

The algorithm stops either when an optimal solution has been (provably) obtained, or when the 
time limit is reached. In this case, the best feasible solution found is returned, as well as the dual 
bound provided by the optimizer. 

 3  Comparison of the algorithms 

 3.1  Mandatory requirements 
According to the documentation received and the forms filled by the candidates, both 
approaches fulfil the mandatory and most of the additional requirements described in 
document “DES-3: Algorithms requirements”. 

In particular, all mandatory order types are correctly taken into account, and congestion 
control (flow-based or ATC) is also implemented in both approaches. 

High Level Properties (HLP) – relating market clearing prices and congestion shadow prices -
are also satisfied in both approaches, except for price boundaries.  

If price boundaries are imposed, prices satisfying all HLP might not exist. None of the 
algorithms handles price boundaries. Negative price boundaries are just a special case of price 
boundaries. But in addition to making the HLP possibly infeasible, they might also lead to 
negative clearing prices. 

At the moment, we think that the algorithms SHOULD NOT take price boundaries into 
account, because it is theoretically impossible to make them compatible with HLP. This does 
not prevent markets to impose price boundaries on the participants, but the final clearing 
prices should not be constrained within the boundaries. Another approach would be to redefine 
the HLP to make them consistent with the price boundaries, but this is definitely out of the 
scope of the analysis of the algorithms. 

 3.2  Optimality and quality of the solution 

 3.2.1  Optimality of the solution 
Due to the methodologies chosen, COSMOS is the only algorithm guaranteed to converge to 
an optimal solution (if ran for long enough), or to provide a measure of the quality of the 
solution in case the time limit is reached without proving optimality. If no PRBs are present in 
the optimal solution, COSMOS will find it without branching. 

This is not true for MLC: in the case where there exists a solution with no PRBs, MLC will 
find it only if the market clearing price and the set of winning blocks converge to that solution 
before DP is increased. Nothing ensures this will be the case, and as soon as DP is increased, 
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PRBs might appear due to the block selection process even if a solution without PRBs exists. 

 3.2.2  Quality of the solution in terms of market aspects 
MLC explicitly manages market aspects (number of PRBs, DeltaP) by controlling an upper 
bound DP on the cumulative DeltaP. Roughly speaking, the heuristic tries to find the smallest 
DP value for which a feasible solution exists, by selecting accepted blocks with a cumulative 
DeltaP less than DP (with respect to the previous iteration). Then it maximizes welfare over 
this set of winning blocks, which is monotonically decreasing (while DP is increasing) in order 
to ensure convergence. 

In COSMOS, optimization is done on the total net utility only. The assumption is done that 
small DeltaP and number of PRBs will come as a consequence of this optimization. 

The weighting between these aspects still remains open. The tuning of the algorithms might 
depend on this decision, and the testing results might differ significantly following this tuning.  
If the only objective is maximizing welfare, COSMOS seems the most elegant approach on a 
theoretical point of view, but only empirical results can tell if the method remains competitive 
if market aspects are integrated.  

In our understanding of the mathematical model used in COSMOS, it would not be possible to 
simply integrate market aspects in the objective function, as no prices explicitly appear in the 
model. However, the assumption behind the algorithm is that market aspects are strongly 
related with welfare. If empirical results show the converse, the authors propose to handle 
these market aspects heuristically, by keeping the best solution (with respect to the market 
aspects) found in the branch-and-bound tree. Doing that, the algorithm would no longer 
guarantee optimality of the solution from the net utility point of view. 

 3.3  Simplicity 
MLC is made of two modules: a heuristic block selection and the optimization of the 
mathematical model. Block selection is based on simple rules that are easy to implement, and 
the mathematical model can be implemented in any QP solver on the market. 

COSMOS is based on a specific implementation of a branch-and-bound strategy with addition 
of cutting planes. This can also be implemented using any QP solver on the market (through 
the solver's callable library or through a modelling language). 

We can conclude that both approaches meet this criterion. 

 3.4  Performance 
Ability to provide a feasible solution within the time limit: 

COSMOS uses a special branching rule that first kills block orders. This approach will 
eventually lead to a feasible solution. In the worst case, as many QPs as block orders could be 
solved before a first feasible solution is found, but in practice this number should be much 
smaller and this should be performed within the given time limit. This solution is trivial. 

For MLC, a feasible solution is found when DP becomes large enough. The rate of 
convergence will highly depend on the evolution of the β parameters, and on the difficulty of 
the instance. Based on the parameters setting proposed, convergence is forced after 70 
iterations (β=1). 
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 3.5  Reliability 
Both algorithms are based on the solution of a large number of convex quadratic programs. 
Many efficient algorithms are known for this problem which is the heart of both methods. 
COSMOS and MLC use the quadratic solver of CPLEX, a commercial and proven robust 
optimizer. Moreover, both algorithms use similar pre-processing techniques to improve the 
speed of convergence of CPLEX in successive iterations. 

 3.6  Extendibility 
Extension to a bigger number of markets is theoretically feasible for both methods, and should 
be tested for efficiency empirically. Based on the current documentation in our possession, 
COSMOS fully supports additional order types like linked block orders and flexible hourly 
orders. MLC has limited support for these orders (the “fill-or-kill” constraint is being relaxed). 

Additional considerations that can be modelled as linear relations is straightforward in 
COSMOS while any such change would require some algorithmic adaptation in MLC block 
selection module. Nonlinear relations (although very unlikely) need to be dealt with 
heuristically in both algorithms. In MLC, these adaptations might also be incompatible with 
the “fill-or-kill” constraint. 

But in practice every additional consideration has to be studied separately. 

 4  Conclusion 
COSMOS is an exact method based on a branch-and-bound approach aimed at maximizing welfare. 
Other market aspects are implicitly considered based on the hypothesis that these market aspects are 
strongly correlated with welfare. Branching rules ensure a feasible solution is computed quickly, 
while the available computing time is used to improve the solution, and if possible, prove its 
optimality. 

MLC is a heuristic-based approach trying to balance welfare and market aspects, with the aim of 
achieving fast convergence. 

Both algorithms satisfy all mandatory requirements, except price boundaries. However, price 
boundaries are incompatible with other requirements. Therefore, it is impossible to solve this 
problem on the algorithmic side. New realistic (and feasible) high level properties should be defined 
if price boundaries are required. 

On a theoretical basis, COSMOS seems the most promising approach, provided the experimental 
results confirm the hypothesis that market aspects are strongly correlated with welfare, and that the 
branch-and-bound approach scales well when problem size increases (in particular, it should always 
be able to find a good quality feasible solution even if optimality is not proven). If this is is not the 
case, MLC would be preferred as market aspects are explicitly taken into account and computing 
time is strictly under control. 

 


